Use of Polycaprolactone Electrospun Nanofibers as a Coating for Poly(methyl methacrylate) Bone Cement
نویسندگان
چکیده
Poly(methyl methacrylate) (PMMA) bone cement has limited biocompatibility. Polycaprolactone (PCL) electrospun nanofiber (ENF) has many applications in the biomedical field due to its excellent biocompatibility and degradability. The effect of coating PCL ENF on the surface topography, biocompatibility, and mechanical strength of PMMA bone cement is not currently known. This study is based on the hypothesis that the PCL ENF coating on PMMA will increase PMMA roughness leading to increased biocompatibility without influencing its mechanical properties. This study prepared PMMA samples without and with the PCL ENF coating, which were named the control and ENF coated samples. This study determined the effects on the surface topography and cytocompatibility (osteoblast cell adhesion, proliferation, mineralization, and protein adsorption) properties of each group of PMMA samples. This study also determined the bending properties (strength, modulus, and maximum deflection at fracture) of each group of PMMA samples from an American Society of Testing Metal (ASTM) standard three-point bend test. This study found that the ENF coating on PMMA significantly improved the surface roughness and cytocompatibility properties of PMMA (p < 0.05). This study also found that the bending properties of ENF-coated PMMA samples were not significantly different when compared to those values of the control PMMA samples (p > 0.05). Therefore, the PCL ENF coating technique should be further investigated for its potential in clinical applications.
منابع مشابه
3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملFunctionalized electrospun nanofibers as bioseparators in microfluidic systems.
Functionalized electrospun nanofibers were integrated into microfluidic channels to serve as on-chip bioseparators. Specifically, poly(vinyl alcohol) (PVA) nanofiber mats were shown to successfully serve as bioseparators for negatively charged nanoparticles. Nanofibers were electrospun onto gold microelectrodes, which were incorporated into poly(methyl methacrylate) (PMMA) microfluidic devices ...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کامل